Imperial College

London

Lecture 6

Frequency-domain analysis:
 Laplace Transform
 (Lathi 4.1-4.2)

Peter Cheung
Department of Electrical \& Electronic Engineering
Imperial College London
URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals
E-mail: p.cheung@imperial.ac.uk

Definition of Two-sided Laplace Transform

- For a signal $x(t)$, its Laplace transform is defined by:

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

- The signal $x(t)$ is said to be the inverse Laplace transform of $X(s)$. It can be shown that

$$
x(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} X(s) e^{s t} d s
$$

where c is a constant chosen to ensure the convergence of the first integral.

- Note that this definition is slightly more complex than what you have seen in Dr J aimouka's 2 $^{\text {nd }}$ year Control course. This general definition does not assume casuality
- This general definite is known as two-sided (or bilateral) Laplace Transform.

Why Laplace Transform?

- Laplace transform is the dual (or complement) of the time-domain analysis.
- In time-domain analysis, we break input $x(t)$ into impulsive component, and sum the system response to all these components
- In frequency-domain analysis, we break the input $x(t)$ into exponentials components of the form $e^{s t}$, where s is the complex frequency:

$$
s=\alpha+j \omega
$$

- Laplace transform is the tool to map signals and system behaviour from the time-domain into the frequency domain

PYKC 24-Jan-11
E2.5 Signals \& Linear Systems
Lecture 6 Slide 2

Definition of One-sided Laplace Transform

- For the purpose of the 2nd year curriculum, let us assume that all signals are causal. For this the Laplace transform is defined as

$$
X(s)=\mathcal{L}[x(t)]=\int_{0}^{\infty} x(t) e^{-s t} d t
$$

- This is the same as that defined on the $2^{\text {nd }}$ year Control course, and is known as one-side (or unilateral) Laplace transform.
- Remember that the Laplace transform is a linear tranform (see Jamouka's notes, p15):

$$
\mathcal{L}\left\{k_{1} f_{1}(t)+k_{2} f_{2}(t)\right\}=k_{1} \mathcal{L}\left\{f_{1}(t)\right\}+k_{2} \mathcal{L}\left\{f_{2}(t)\right\}
$$

A few examples

A few examples (2)

- Find the Laplace transform of $\delta(\mathrm{t})$ and $\mathrm{u}(\mathrm{t})$.

Laplace transform Pairs (1)

- Finding inverse Laplace transform requires integration in the complex plane - beyond scope of this course.
- So, use a Laplace transform table (analogous to the convolution table).

No.	$x(t)$	$X(s)$
1	$\delta(t)$	$\frac{1}{s}$
2	$u(t)$	$\frac{1}{s^{2}}$
3	$t u(t)$	$\frac{n!}{s^{n+1}}$
4	$t^{n} u(t)$	
PYKC 24-Jan-11		E2.1 p344

- Find the Laplace transform of $e^{a t} u(t)$ and $\cos \omega_{0} t u(t)$.

$$
\begin{aligned}
\mathcal{L}\left[e^{a t} u(t)\right] & =\int_{0}^{\infty} e^{a t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} d t=\frac{1}{s-a}
\end{aligned}
$$

$$
\mathcal{L}\left[e^{a t} u(t)\right] \Leftrightarrow \frac{1}{s-a}
$$

$$
\begin{aligned}
& \mathcal{L}\left[\cos \omega_{0} t u(t)\right]=\frac{1}{2} \mathcal{L}\left[e^{j \omega_{0} t} u(t)+e^{-j \omega_{0} t} u(t)\right] \\
& \quad=\frac{1}{2}\left[\frac{1}{s-j \omega_{0}}+\frac{1}{s+j \omega_{0}}\right]=\frac{s}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

$$
\mathcal{L}\left[\cos \omega_{0} t u(t)\right] \quad \Leftrightarrow \quad \frac{s}{s^{2}+\omega_{0}{ }^{2}}
$$

Laplace transform Pairs (2)

No.	$x(t)$	$X(s)$
5	$e^{\lambda /} u(t)$	$\frac{1}{s-\lambda}$
6	$t e^{\lambda t} u(t)$	$\frac{1}{(s-\lambda)^{2}}$
7	$t^{n} e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
8a	$\cos b t u(t)$	$\frac{s}{s^{2}+b^{2}}$
8b	$\sin b t u(t)$	$\frac{b}{s^{2}+b^{2}}$
9a	$e^{-a t} \cos b t u(t)$	$\frac{s+a}{(s+a)^{2}+b^{2}}$
9b	$e^{-a t} \sin b t u(t)$	$\frac{b}{(s+a)^{2}+b^{2}}$

Laplace transform Pairs (3)

Examples of Inverse Laplace Transform (2)

- Easy to make mistake with partial fraction.
- Method to check correctness of:

$$
X(s)=\frac{7 s-6}{(s+2)(s-3)}=\frac{4}{s+2}+\frac{3}{s-3}
$$

- Substitute $s=0$ into the equation (could use other values, but this is most convenient):

$$
X(0)=\frac{-6}{(+2)(-3)}=1=\frac{4}{2}+\frac{3}{-3}
$$

- Therefore, using Pair 5 from table:

$$
x(t)=\mathcal{L}^{-1}\left(\frac{4}{s+2}+\frac{3}{s-3}\right)=\left(4 e^{-2 t}+3 e^{3 t}\right) u(t)
$$

Examples of Inverse Laplace Transform (1)

- Finding inverse Laplace transform of $\frac{7 s-6}{s^{2}-s-6}$. (use partial fraction)

$$
X(s)=\frac{7 s-6}{(s+2)(s-3)}=\frac{k_{1}}{s+2}+\frac{k_{2}}{s-3}
$$

- To find k_{1} which corresponds to the term ($s+2$), cover up ($s+2$) in $X(s)$, and substitute $s=-2$ (i.e. $s+2=0$) in the remaining expression:
- Similarly for k_{2} :

$$
k_{1}=\left.\frac{7 s-6}{(s+2)(s-3)}\right|_{s=-2}=\frac{-14-6}{-2-3}=4
$$

- Therefore

$X(s)=\frac{7 s-6}{(s+2)(s-3)}=\frac{4}{s+2}+\frac{3}{s-3}$	L4.1 p349
EYKC 24-Jan-11	Lecture 6 Slide 10

Examples of Inverse Laplace Transform (3)

- Finding the inverse Laplace transform of $\frac{2 s^{2}-5}{(s+1)(s+2)}$.
- The partial fraction of this expression is less straight forward. If the power of numerator polynomial (M) is the same as that of denominator polynomial (N), we need to add the coefficient of the highest power in the numerator to the normal partial fraction form:

$$
X(s)=2+\frac{k_{1}}{s+1}+\frac{k_{2}}{s+2}
$$

- Solve for k_{1} and k_{2} via "covering": $\quad k_{1}=\left.\frac{2 s^{2}+5}{(s+1)(s+2)}\right|_{s=-1}=\frac{2+5}{-1+2}=7$
- Therefore $X(s)=2+\frac{7}{s+1}-\frac{13}{s+2} \quad k_{2}=\left.\frac{2 s^{2}+5}{(s+1)(s+2)}\right|_{s=-2}=\frac{8+5}{-2+1}=-13$
- Using pairs 1 \& 5:

$$
x(t)=2 \delta(t)+\left(7 e^{-t}-13 e^{-2 t}\right) u(t)
$$

Time Shifting Property of the Laplace transform

Application of Time Shifting

- Time Shifting property:

$$
\begin{aligned}
x(t) & \Longleftrightarrow X(s) \quad \text { for } t_{0} \geq 0 \\
x\left(t-t_{0}\right) & \Longleftrightarrow X(s) e^{-s t_{0}}
\end{aligned}
$$

- Delaying $x(t)$ by t_{0} (i.e. time shifting) amounts to multiplying its transform $X(s)$ by $e^{-s t_{0}}$
- Remember that $x(t)$ starts at $t=0$, and $x\left(t-t_{0}\right)$ starts at $t=t_{0}$.
- Therefore, the more accurate statement of the time shifting property is:

$$
\begin{aligned}
x(t) u(t) & \Longleftrightarrow X(s) \\
x\left(t-t_{0}\right) u\left(t-t_{0}\right) & \Longleftrightarrow X(s) e^{-s t_{0}} \quad t_{0} \geq 0
\end{aligned}
$$

- Find the Laplace transform of $x(t)$ as shown:

$x(t)=(t-1)[u(t-1)-u(t-2)]+[u(t-2)-u(t-4)]$ $=(t-1) u(t-1)-(t-1) u(t-2)+u(t-2)-u(t-4)$ $=(t-1) u(t-1)-(t-2) u(t-2)-u(t-4)$

L4.2 p361
PYKC 24-Jan-11
E2.5 Signals $\&$ Linear Systens

Application of Frequency Shifting

- Given $\cos b t u(t) \Longleftrightarrow \frac{s}{s^{2}+b^{2}}$, show that $e^{-a t} \cos b t u(t) \Longleftrightarrow \frac{s+a}{(s+a)^{2}+b^{2}}$
- Apply frequency-shifting property with frequency shift $s_{0}=-a$.
- Replace s with ($s+a$) means frequency shift by -a. This yields the RHS of the equation. By frequency-shifting property, we need to multiply the LHS by $e^{-a t}$.

$$
\begin{aligned}
x(t) & \Longleftrightarrow X(s) \quad \text { for } t_{0} \geq 0 \\
x\left(t-t_{0}\right) & \Longleftrightarrow X(s) e^{-s t_{0}}
\end{aligned}
$$

Time-Differentiation Property

- Time-differentiation property:

$$
\begin{aligned}
x(t) & \Longleftrightarrow X(s) \\
\frac{d x}{d t} & \Longleftrightarrow s X(s)-x\left(0^{-}\right)
\end{aligned}
$$

- Repeated application of this property yields:

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & \Longleftrightarrow s^{2} X(s)-s x\left(0^{-}\right)-\dot{x}\left(0^{-}\right) \\
\frac{d^{n} x}{d t^{n}} & \Longleftrightarrow s^{n} X(s)-s^{n-1} x\left(0^{-}\right)-s^{n-2} \dot{x}\left(0^{-}\right)-\cdots-x^{(n-1)}\left(0^{-}\right) \\
& =s^{n} X(s)-\sum_{k=1}^{n} s^{n-k} x^{(k-1)}\left(0^{-}\right)
\end{aligned}
$$

where $x^{(r)}\left(0^{-}\right)$is $d^{r} x / d t^{r}$ at $t=0^{-}$.
Frequency-differentiation property:

L4.2 p364 \quad| $x(t)$ | $\Longleftrightarrow X(s)$ |
| ---: | :--- |
| $t x(t)$ | $\Longleftrightarrow-\frac{d}{d s} X(s)$ |

PYKC 24-Jan-11

> E2.5 Signals \& Linear Systems

Application of Time-Differentiation

- Find the Laplace transform of the signal $x(t)$ using time differentiation and time-shifting properties.

$$
\mathcal{L}\left[\frac{d x}{d t}\right]=\int_{0^{-}}^{\infty} \frac{d x}{d t} e^{-s t} d t
$$

- Integration by parts gives:

$$
\mathcal{L}\left[\frac{d x}{d t}\right]=\left.x(t) e^{-s t}\right|_{0^{-}} ^{\infty}+s \int_{0^{-}}^{\infty} x(t) e^{-s t} d t
$$

- For the Laplace integral to converge, it is necessary that
- Therefore we get:
$x(t) e^{-s t} \rightarrow 0$ as $t \rightarrow \infty$
$\mathcal{L}\left[\frac{d x}{d t}\right]=-x\left(0^{-}\right)+s X(s)$

E2.5 Signals \& Linear Systems

Time-Integration Property

- Time-integration property:

$$
\begin{aligned}
x(t) & \Longleftrightarrow X(s) \\
\int_{0^{-}}^{t} x(\tau) d \tau & \Longleftrightarrow \frac{X(s)}{s}
\end{aligned}
$$

- The dual property of time-integration is the frequency-integration property:

$$
\begin{aligned}
x(t) & \Longleftrightarrow X(s) \\
\frac{x(t)}{t} & \Longleftrightarrow \int_{s}^{\infty} X(z) d z
\end{aligned}
$$

Scaling Property

- Scaling property:

$$
\begin{aligned}
& x(t) \Longleftrightarrow X(s) \\
& x(a t) \Longleftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right)
\end{aligned} \quad \text { for } a>0
$$

- Time compression of a signal by a factor a causes expansion of its Laplace transform in s-scale by the same factor.

Application of the convolution Properties

- Use the time-convolution property of the Laplace transform to determine

$$
c(t)=e^{a t} u(t) * e^{b t} u(t)
$$

- Since $\quad e^{a t} u(t) \Leftrightarrow \frac{1}{(s-a)} \quad e^{b t} u(t) \Leftrightarrow \frac{1}{(s-b)}$
- Therefore $\quad e^{a t} u(t) * e^{b t} u(t) \Leftrightarrow \frac{1}{(s-a)(s-b)}$

$$
C(s)=\frac{1}{(s-a)(s-b)}=\frac{1}{a-b}\left[\frac{1}{s-a}-\frac{1}{s-b}\right]
$$

- Perform inverse Laplace transform gives:

$$
c(t)=\frac{1}{a-b}\left(e^{a t}-e^{b t}\right) u(t)
$$

Time-Convolution \& Frequency-Convolution Properties

- Time-convolution property:

$$
\begin{gathered}
x_{1}(t) \Longleftrightarrow X_{1}(s) \quad \text { and } \quad x_{2}(t) \Longleftrightarrow X_{2}(s) \\
x_{1}(t) * x_{2}(t) \Longleftrightarrow X_{1}(s) X_{2}(s)
\end{gathered}
$$

- Convolution in time domain is equivalent to multiplication in s (frequency) domain.
- Frequency-convolution property:

$$
\begin{aligned}
x_{1}(t) & \Longleftrightarrow X_{1}(s) \\
x_{1}(t) x_{2}(t) & \Longleftrightarrow \frac{1}{2 \pi j}\left[X_{1}(s) * X_{2}(s)\right]
\end{aligned}
$$

- Convolution in s (frequency) domain is equivalent to multiplication in time domain.

| PYKC 24-Jan-11 E2.5 Signals \& Linear Systems | Lecture 6 Slide 22 |
| :--- | :--- | :--- |

Relationship with time-domain analysis

- If $h(t)$ is the impulse response of a LTI system, then we have see in lectures $4 \& 5$ that the system response $y(t)$ to an input $x(t)$ is $x(t) * h(t)$.
- Assuming causality, and that $h(t) \Leftrightarrow H(s)$ and $x(t) \Leftrightarrow X(s)$ then

$$
Y(s)=X(s) H(s)
$$

- The response $y(t)$ is the zero-state response of the LTI system to the input $x(t)$. It follows that the transfer function $H(s)$:

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{\mathcal{L}[\text { zero-state response }]}{\mathcal{L}[\text { input }]}
$$

Summary of Laplace Transform Properties (1)
Summary of Laplace Transform Properties (2)

Operation	$x(t)$	$X(s)$		
Time shifting	$x\left(t-t_{0}\right) u\left(t-t_{0}\right)$	$X(s) e^{-s s_{0}}$	$t_{0} \geq 0$	
Frequency shifting	$x(t) e^{50 t}$	$X\left(s-s_{0}\right)$		
Frequency differentiation	$-t x(t)$	$\frac{d X(s)}{d s}$		
Frequency integration	$\frac{x(t)}{t}$	$\int_{s}^{\infty} X(z) d z$		
Scaling	$x(a t), a \geq 0$	$\frac{1}{a} X\left(\frac{s}{a}\right)$		
Time convolution	$x_{1}(t) * x_{2}(t)$	$X_{1}(s) X_{2}(s)$		
Frequency convolution	$x_{1}(t) x_{2}(t)$	$\frac{1}{2 \pi j} X_{1}(s) * X_{2}(s)$		
Initial value	$x\left(0^{+}\right)$	$\lim _{s \rightarrow \infty} s X(s)$	($n>m$)	
Final value	$x(\infty)$	$\lim _{s \rightarrow 0} s X(s)$	[poles of $s X(s)$ in LHP]	L4.2 2369
24-Jan-11	E2. 5 S	\& Linear Systems		Lecture 6 Slide 26

Relating this lecture to other courses

- You have done Laplace transform in maths and in control courses. This lecture is mostly a revision, plus emphasis on the convolution multiplication properties for the two domains.
- Many of the properties are deliberately stated without proofs. It is more important on this course to understand the actual interpretations of Laplace transform (and more importantly the duality of time and frequency domains) than the mathematic proofs.

